Global analyses within the small-x resummation collinear approach

Underlying QCD characteristics at Small-x

Fred Olness SMU

Thanks for substantial input from my friends & colleagues

Small-x Physics in the EIC Era RIKEN BNL Research Center 15-17 December 2021

The incredible success of the QCD Parton Model Framework

... but, are we only looking under the lamp post

nPDFs: Extend Kinematic Reach in $\{x,Q^2\}$

High-x:

Nuclear PDFs: x>1 allowed; impacts $F_2^{\text{Nuc}}/F_2^{\text{Iso}}$ in Fermi region Target Mass Corrections pick up M^2/Q^2 higher twist Deuteron Corrections impacts $F_2^{\text{Nuc}}/F_2^{\text{Deuteron}}$ ratio

Low-x:

Shadowing Recombination Resummation

BFKL

Saturation

Low- Q^2 :

Non-Perturbative inteface collective effects

Target Mass Corrections pick up M^2/Q^2 higher twist F_L at low Q^2 access to g(x)Run at multiple energies

JLab Data @ Hi-X Low-Q²

extend nCTEQ framework for this region & prepare for EIC

Saturation, BFKL, recombination, ...

Can Saturation be Discovered at EIC?

EIC has an unprecedented small-x reach for DIS on large nuclear targets, allowing to seal the discovery of saturation physics and study of its properties:

Yuri Kovchegov (OSU)

MC4EIC: Monte Carlo event simulation for the EIC

Proton Case

xFitter Analysis w/ HELL Code

Features & Recent Updates:

- Photon PDF & QED
- Pole & MS-bar masses
- Profiling and Re-Weighting
- Heavy Quark Variable Treshold
- Update χ^2 and correlations
- TMD PDFs (uPDFs)
- ... and many other

Sample data files:

LHC: ATLAS, CMS, LHCb

Tevatron: CDF, D0 **HERA:** H1, ZEUS,

Combined

Fixed Target: ...

User Supplied: ...

Experimental Data

Data: HERA, Tevatron, LHC, fixed target experiments

Processes:

Inclusive DIS, Jets, Drell-Yan, Diffraction, Top production W and Z production

Parton Distribution Functions:

xFitter 2.0.1

Old Fashioned

Theory Calculations

HQ Schemes: MSTW, NNPDF, ABM, ACOT

Jets, W, Z: FastNLO, ApplGrid

Hathor Top:

Evolution: QCDNUM, APFEL, k_T NNPDF reweighting Other:

TMDs, Dipole Model, ...

 $\alpha_{s}(M_{z}), m_{e}, m_{b}, m_{t} \dots$

PDF, Updf, TMD

Theoretical Cross Sections

Comparisons to other PDFs (LHAPDF)

extensions include nuclear PDFs

Date Version 2.0.1N Nuclear Daiquiri 02/2020

Small x (*Low Q*): need to improve fits NNLO: "fits at NNLO do not improve agreement"

Eur. Phys. J. C (2018) 78:621
https://doi.org/10.1140/epjc/s10052-018-6090-8

Regular Article - Theoretical Physics

Impact of low-x resummation on QCD analysis of HERA data

xFitter Developers' team, Hamed Abdolmaleki¹, Valerio Bertone^{2,3,a}, Daniel Britzger⁴, Stefano

HERAPDF2.0 shows tensions between data and fit, independent of the heavy-flavour scheme used, at low Q^2 , i.e. below $Q^2 = 15 \,\text{GeV}^2$, and at high Q^2 , i.e. above $Q^2 = 150 \,\text{GeV}^2$. Comparisons between the behaviour of the fits with different Q^2_{\min} values indicate that the NLO theory evolves faster than the data towards lower Q^2 and x. Fits at NNLO do not improve the agreement. HERAPDF2.0 NNLO and NLO have a similar fit quality.

NNLO vs. NLO

Fig. 8 The H1 extraction of F_L compared to the predictions with and without ln(1/x) resummation

Proton Case

CT18 & Extensions

BFKL & Saturation

Non-optimal fit in small x region (large $W^2 \sim Q^2/x$)

PDFs at small x: resummation or saturation?

QCD dynamics vs (Q,x)

Keping Xie

(Pittsburgh) 08 Dec 2021 Snowmass'2021 EF06

- Red lines "fit" $\sigma_{tot}^{\gamma^*p}$ for a fixed Q
- The slope $\sigma \sim 1/x$ changes as a function of (x,Q), predicting the rapid growth of PDFs at $x \to 0$
- For points below the blue line, expectations are consistent with DGLAP. Above, we see deviations.
- The boundary has not been located precisely.

Study small-x region with BOTH: Saturation & BFKL

How to treat the low- ${\cal Q}$ and low- ${\cal x}$ data?

- NNPDF/xFitter: BFKL to resum the small-x log's [1710.05935, 1802.00064]
- CT: x-dependent scale, motivated by saturation effect [Golec-Biernat & Wusthoff, PRD1998]

model saturation

$$\mu_{\mathrm{DIS},x}^2 = a_1(Q^2 + a_2/x^{a_3})$$

- We obtain the same level of agreement between data and theory
- ullet Both approaches enhance (reduce) the gluon (singlet) PDF at small x and Q.
- ullet At a higher Q, the small-x effect disappear.
- Within the currently accessible experimental region, the PDFs and predicted cross sections agree well between the two approaches.
- Higher-twist effects can also play a similar role [1707.05992].

Keping Xie (Pittsburgh) 08 Dec 2021 Snowmass'2021 contributions from EF06

CT18x: Saturation inspired μ modification CT18sx: w/ HELL small-x resummation code

Saturation inspired x-dependent $\mu^2 = a_1 \left(Q^2 + \frac{a_2}{r^{a_3}} \right)$

BFKL & Saturation differ at very small x

Still, large uncertainty at small x $(low Q^2)$

Nuclear Effects

Nuclear Modifications: Expected $A^{1/3}$ Enhancement

Gluon PDF

1) J/Psi Production &

2) Semi-Inclusive Hadron Production

Nuclear Gluon PDF
Large uncertainties
Strong shadowing at small x

Caution: EPPS16 errors are probably more realistic at small x than nCTEQ15

Heavy FlavorProduction: Effective Probe of Gluon PDF

Small-x gluon from pPb LHC heavy-flavour data

[PRL 121, 052004 (2018)]

Kusina Lansberg Schienbein Shao

	D^0	J/ψ	$B o J/\psi$	$\Upsilon(1S)$
μ_0	$\sqrt{4M_{D^0}^2 + P_{T,D^0}^2}$	$\sqrt{M_{J/\psi}^2 + P_{T,J/\psi}^2}$	$\sqrt{4M_B^2 + \left(\frac{M_B}{M_{J/\psi}} P_{T,J/\psi}\right)^2}$	$\sqrt{M_{\Upsilon(1S)}^2 + P_{T,\Upsilon(1S)}^2}$
p+p data	LHCb [1]	LHCb [2,3]	LHCb [2,3]	ALICE [4], ATLAS [5],
				CMS [6], LHCb [7,8]
R_{pPb} data	ALICE [9],	ALICE [10,11],	LHCb [12]	ALICE [13], ATLAS [14],
•	LHCb [15]	LHCb $[16,12]$		LHCb [17]

34 / 40

A. Kusina (INP PAN, Krakow) Aussois Quarkonium & QCD meeting joined session with GDR-QCD WG1 Aussois, 23 June 2021

Expected nuclear effects on heavy quark(onium) production in pA collisions

- ▶ Nuclear modification of PDFs: initial-state effect
- Energy loss (w.r.t. pp collisions): initial-state or final-state effect
- ▶ Break up of the quarkonium in the nuclear matter: final-state effect
- ▶ Break up by comoving particles: final-state effect
- ► Colour filtering of intrinsic QQ pairs: initial-state effect
- **>** ...
 - ➤ We assume leading twist factorization is valid ONLY modifications of PDFs are present → "shadowing-only" hypothesis.

Heavy-Flavor Production Data at the LHC:

Semi-Inclusive Hadron Production

Semi-Inclusive Hadron (SIH) Production:

New Phenomena in Corners of Kinematic Plane

CONCLUSIONS

High-x:

Nuclear PDFs: x>1 allowed; impacts $F_2^{\text{Nuc}}/F_2^{\text{Iso}}$ in Fermi region Target Mass Corrections pick up M^2/Q^2 higher twist Deuteron Corrections impacts $F_2^{\text{Nuc}}/F_2^{\text{Deuteron}}$ ratio

Low-x:

Shadowing

Recombination

Resummation

BFKL

Saturation

Low- Q^2 :

Non-Perturbative inteface collective effects

Target Mass Corrections pick up M^2/Q^2 higher twist F_L at low Q^2 access to g(x)Run at multiple energies

JLab Data @ Hi-X Low-Q²

extend nCTEQ framework for this region & prepare for EIC

